Search results

1 – 6 of 6
Article
Publication date: 7 June 2019

Grzegorz Tomaszewski, Jerzy Potencki, Grzegorz Błąd, Tadeusz Wałach, Grzegorz Gajór, Alena Pietrikova and Peter Lukacs

The purpose of this paper is to study the repeatability of path manufacturing in the drop on demand inkjet printing process and the influences of environmental and application…

Abstract

Purpose

The purpose of this paper is to study the repeatability of path manufacturing in the drop on demand inkjet printing process and the influences of environmental and application factors on path resistance.

Design/methodology/approach

Paths were printed as multiline paths in packets one-, two- and three-layer paths on polyimide substrates using nanoparticle silver ink. The sintering conditions were determined experimentally. The paths were subjected to climatic and shock exposures and to bending processes. The resistance, profile and width of the paths were measured and analyzed. The temperature distribution for electrically heated paths was measured to identify the defects.

Findings

This research shows the repeatability of printing processes and identifies the sources that cause diversification in path parameters after the whole technological process. The influence of shock, climatic and mechanical exposures on path electrical properties is indicated. An effective method for identifying defects thermally is shown.

Research limitations/implications

The research could have limited universality by arbitrarily use of substrate material, ink, printhead, process parameters and kind of sample exposures.

Practical implications

The research includes practically useful information about the width, thickness, defects and resistances and their changes during a typical application for a path printed with different technological parameters.

Originality/value

This research presents the results of original empirical research on problems concerning the manufacture of paths with uniform parameters and shows how path parameters will change under exposures that may occur in a typical application. The research combines both production and application aspects.

Details

Circuit World, vol. 45 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 January 2018

Grzegorz Tomaszewski, Jerzy Potencki and Tadeusz Wałach

This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow…

Abstract

Purpose

This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow paths occurs.

Design/methodology/approach

A piezoelectric printhead containing nozzles with a diameter of 35 µm was used for printing nanoparticle silver ink on different polymer substrates which were treated by plasma or not treated at all. The shape, defects, resistance and printing parameters for the printed paths were analysed.

Findings

The obtained results allow the identification of the sources of the technological problems in obtaining a high packing density of the paths in a small area of substrate and the repeatable prints.

Research limitations/implications

The study could have limited universality because of the chosen research method; printhead, ink, substrate materials and process parameters were arbitrarily selected. The authors encourage the study of other kinds of conductive inks, treatment methods and printing process parameters.

Practical implications

The study includes practically useful information about widths, shapes, defects and the resistance of the paths printed using different technological parameters.

Originality/value

The study presents the results of original empirical research on problems of the packing density of inkjet printed paths on a small area of substrate and identifies problems that must be resolved to obtain effective interconnections in the inkjet technology.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 February 2017

Grzegorz Tomaszewski and Jerzy Potencki

This paper aims to study drop formation in piezoelectric industrial printheads during the inkjet printing processes. It presents how the piezoelectric printhead forms drops of…

1254

Abstract

Purpose

This paper aims to study drop formation in piezoelectric industrial printheads during the inkjet printing processes. It presents how the piezoelectric printhead forms drops of nanoparticle ink and how the problems with different values of drop parameters may influence the printed pattern’ defects and quality.

Design/methodology/approach

A piezoelectric printhead with 128 nozzles was activated to operate in a controlled manner, and the droplets ejected from the nozzles were observed during falling and analysed in the printview system. The effect of varying the values of drop parameters on print quality and pattern defects has been analysed and discussed.

Findings

The obtained results allow the identification of the sources of the technological problems in obtaining repeatable performance drops with the desired properties, and indicate the importance of choosing the appropriate individually chosen strategy of controlling the printing for each individual application to get good-quality and free-from-defects patterns.

Research limitations/implications

Because of the chosen research method (arbitrary selected printhead type and ink manufacturer), this study could have limited universality. Authors encourage the study of other kinds of piezoelectric heads or other conductive inks.

Practical implications

This study includes practically useful applications for users to improve the inkjet print quality.

Originality/value

This study presents results of original empirical research works on problems of the drops forming in the inkjet printing process, and finally, it identifies problems that must be resolved to disseminate this technology.

Details

Circuit World, vol. 43 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 July 2018

Jerzy Potencki, Grzegorz Tomaszewski, Tadeusz Wałach and Witold Malikowski

The purpose of this study is to design a simple and cheap temperature transducer with frequency output with high measurement resolution in low temperature co-fired ceramic (LTCC…

Abstract

Purpose

The purpose of this study is to design a simple and cheap temperature transducer with frequency output with high measurement resolution in low temperature co-fired ceramic (LTCC) technology by using the distributed Resistance-Capacitance (RC) networks in high-pass filter configuration.

Design/methodology/approach

This paper presents the concept of elaboration of a transducer of temperature into frequency, its implementation in LTCC technology and test results. Construction and technological works are supported by a series of computer simulations of the process of indirect adjustment of the whole system.

Findings

The investigation results of the proposed and developed system have confirmed the correctness of the adopted concept, and the practical usefulness of an applied original method of indirect adjusting of the transducer.

Practical implications

The study contains practical and useful information about the principles of designing and manufacturing of the converters of the different physical quantities into frequency by using the elements with distributed parameters made in LTCC technology which was presented on the example of a temperature transducer.

Originality/value

The study presents the original solution of a simple transducer with the use of RC structures with distributed parameters made in LTCC technology and the idea of indirect adjustment of the elements to a desired value.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 February 2016

Alena Pietrikova, Peter Lukacs, Dagmar Jakubeczyova, Beata Ballokova, Jerzy Potencki, Grzegorz Tomaszewski, Jan Pekarek, Katerina Prikrylova and Martin Fides

This paper aims to find an optimal surface treatment of commonly used polymeric substrates for achieve the high adhesion of printed structures. For this reason, the investigation…

1705

Abstract

Purpose

This paper aims to find an optimal surface treatment of commonly used polymeric substrates for achieve the high adhesion of printed structures. For this reason, the investigation of substrates surfaces from different perspectives is presented in this paper.

Design/methodology/approach

The contact angle measurements as well as the roughness measurements were realised for the analysis of surface properties of investigated substrates. The impact of applied chemical agents for surface treatment onto the wettability is analysed for polyimide, polyethylene terephthalate and polyethylene naphthalene substrates.

Findings

The results prove the correlation among wettability, surface energy and work of adhesion with respect to the theoretical background. The surface treatment of polymeric substrates by chemical agents, such as acetone, toluene, ethanol, isopropyl and fluor silane polymer, has a significant impact onto the wettability of substrates which affects the final deposition process of nanoinks.

Originality/value

The main benefit of the surfaces’ investigation presented in this paper lays in surface modification by readily available chemical agents for optimising the deposition process nanoinks used in inkjet printing technology.

Details

Circuit World, vol. 42 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 25 March 2022

Aleksandra Pakuła, Grzegorz Muchla, Bartosz Załęcki, Michał Jakub Modzelewski and Tomasz Goetzendorf-Grabowski

This paper aims to describe the mechanical aspects of unmanned Mothership Plane and Sensing Drones. The presented conceptual system shows the idea and possible way of designing…

Abstract

Purpose

This paper aims to describe the mechanical aspects of unmanned Mothership Plane and Sensing Drones. The presented conceptual system shows the idea and possible way of designing different sizes and objective systems based on experience gained during the SAE Aero Design Competition.

Design/methodology/approach

The UAS is based on a SAE Aero Design Competition designed and manufactured Mothership Plane converted to a high endurance platform modified to launch up to six small copters. The process of designing and converting the Mothership is described. The methodology of selecting and planning either the structure or hardware of the drones is presented.

Findings

A key finding is that the presented conception of mothership plane deploying in flight a group of small sensing multirotors is achievable. Moreover, the modular build of the system provides the possibility to adapt currently existing unmanned aircrafts to be converted to the described mothership plane.

Practical implications

To conduct flight tests and to study encountered problems. Presentation of the unmanned aerial system (UAS) concept that can be used to scan an area and create 3D maps for Search and Rescue missions as well as agriculture applications.

Originality/value

The paper describes the conceptual approach to design a UAS consisting of the mothership plane and the sensing drones. The paper highlights the potential solutions gained by using such a UAS. The focus is to present a technology and system that can perform real time observations in widespread and difficult to reach areas.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 6 of 6